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Abstract. We describe the Max Planck Institute Carbon Cy-
cle Data Assimilation System (MPI-CCDAS) built around
the tangent-linear version of the land surface scheme of the
MPI-Earth System Model v1 (JSBACH). The simulated ter-
restrial biosphere processes (phenology and carbon balance)5

were constrained by observations of the fraction of photo-
synthetically active radiation (TIP-FAPAR product) and by
observations of atmospheric CO2 at a global set of moni-
toring stations for the years 2005 - 2009. The system suc-
cessfully, and computationally efficiently, improved average10

foliar area and northern extra-tropical seasonality of foliar
area when constrained by TIP-FAPAR. Global net and gross
carbon fluxes were improved when constrained by atmo-
spheric CO2, although the system tended to underestimate
tropical productivity. Assimilating both data streams jointly15

allowed the MPI-CCDAS to match both observations (TIP-
FAPAR and atmospheric CO2) equally well as the single
data stream assimilation cases, therefore overall increasing
the appropriateness of the resultant parameter values and bio-
sphere dynamics. Our study thus highlights the role of the20

TIP-FAPAR product in stabilising the underdetermined at-
mospheric inversion problem and demonstrates the value of
multiple-data stream assimilation for the simulation of ter-
restrial biosphere dynamics. The constraint on regional gross
and net CO2 flux patterns is limited through the parametrisa-25

tion of the biosphere model. We expect improvement on that
aspect through a refined initialisation strategy and inclusion
of further biosphere observations as constraints.

1 Introduction

Estimates of the net carbon balance of the terrestrial bio- 30

sphere are highly uncertain (Le Quéré et al., 2015), because
the net balance cannot be directly observed at large spatial
scales. Studies aiming to quantify the contemporary global
carbon cycle therefore either infer the terrestrial carbon bud-
get as a residual of the arguably better constrained other com- 35

ponents of the global carbon budget (Le Quéré et al., 2015),
or rely on measurements of atmospheric CO2 and the inver-
sion of its atmospheric transport (Gurney et al., 2002).

Both approaches have the caveat that they are not able
to provide accurate estimates at high spatial resolution, and 40

cannot utilise the broader set of Earth system observations
that provide information on terrestrial carbon cycle dynam-
ics (Luo et al., 2012). Further, they are diagnostic by nature,
and lack therefore any prognostic capacity.

Ecosystem models integrate existing knowledge of the un- 45

derlying processes governing the net terrestrial carbon bal-
ance and have such a prognostic capacity. Since they sim-
ulate all major aspects of the terrestrial carbon cycle, they
can - in principle - benefit from the broader set of Earth sys-
tem observations. However, studies comparing different land 50

surface models show a large spread of estimates of the sea-
sonal and annual net land-atmosphere carbon exchange and
their trends (Piao et al., 2013; Sitch et al., 2015). This uncer-
tainty is one of the primary causes for discrepancies in future
projections of stand-alone terrestrial biosphere models (Sitch 55

et al., 2008), and coupled carbon cycle climate model projec-
tions (Anav et al., 2013; Friedlingstein et al., 2014) for the
21st century. Next to the uncertainty due to different climate
forcing (Jung et al., 2007; Dalmonech et al., 2015) and alter-
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2 Schürmann et al.: MPI-CCDAS

native model formulations (Sitch et al., 2015), the uncertainty
about the parameter values of the mathematical representa-
tion of key carbon cycle processes in these models are an
important source of the model spread (Knorr and Heimann,
2001; Zaehle et al., 2005; Booth et al., 2012). This parametric5

uncertainty can be as large as the differences between mod-
els. The spread among models limits our ability to provide
further constraints of the net terrestrial carbon uptake.

A potential route to reduce parameter and process-
formulation related uncertainties in the estimates of the ter-10

restrial carbon cycle is to systematically integrate the in-
creasing wealth of globally distributed carbon cycle obser-
vations into models through data assimilation methods. A
broad overview of potential observations and methodological
choices is given in Raupach et al. (2005). A prototype of such15

a carbon cycle data assimilation system (CCDAS) based on
an advanced variational data assimilation scheme and a prog-
nostic terrestrial carbon flux model (BETHY; Knorr 1997,
2000) has demonstrated the potential to effectively constrain
the simulated carbon cycle with observations of atmospheric20

CO2 (Rayner et al., 2005; Scholze et al., 2007; Kaminski
et al., 2013). Conceptually similar systems have been built
for other global biosphere models. For example, Luke (2011)
constrained the phenology of the JULES model and Kuppel
et al. (2012, 2013) applied the ORCHIDEE model at a se-25

ries of FLUXNET-sites to estimate process parameters across
these sites and further demonstrated the usefulness of the
approach to improve globally modelled CO2. Whereas the
above systems rely on precise calculation of the gradients by
a tangent-linear or adjoint version of the biosphere model,30

another CCDAS-like work demonstrated the assimilation of
several data streams with the VISIT-model, approximating
the gradient with finite differences (Saito et al., 2014). Knorr
and Kattge (2005) investigated the use of a Monte-Carlo ap-
proach for data assimilation with global models and sug-35

gested that the computational burden (run time) is too large to
allow its use with a comprehensive land surface model and a
reasonable parameter vector. Ziehn et al. (2012) managed to
apply a Monte Carlo algorithm to a global set-up of BETHY
with a reduced parameter vector.40

To make progress in the representation of carbon cycle dy-
namics in one process-based land surface model included in
a coupled carbon cycle climate model, we have developed a
CCDAS system for the JSBACH land surface scheme (Rad-
datz et al., 2007) of the MPI-Earth System Model (MPI-45

ESM; Giorgetta et al., 2013). JSBACH is a further devel-
opment of the BETHY model, providing a more detailed
treatment of carbon turnover and storage in the terrestrial
biosphere, as well as more detailed treatment of land sur-
face biophysics (Roeckner et al., 2003) and land hydrology50

(Hagemann and Stacke, 2014). Here we present the develop-
ment and first application of a variational data assimilation
system built around the JSBACH model (Max Planck Insti-
tute Carbon Cycle Data Assimilation System: MPI-CCDAS).
Our objective with this development is twofold: i) to improve55

the scope of the original CCDAS by including a larger set
of terrestrial processes affecting the terrestrial carbon cycle;
and ii) to provide a means to constrain the land carbon cy-
cle projections of JSBACH, and in hindsight also that of the
MPI-ESM. While the MPI-CCDAS is driven with observed 60

meteorology, and differences in the simulated terrestrial car-
bon cycle between JSBACH with observed meteorology or
coupled to the ESM exist (Dalmonech et al., 2015), certain
features of the land processes are robust to the climate biases
of the MPI-ESM, such that one might expect an improved 65

carbon representation in the entire MPI-ESM after applica-
tion of the MPI-CCDAS.

In this paper, we provide the technical description of
the MPI-CCDAS system. We then demonstrate the capac-
ity of the MPI-CCDAS system to simultaneously integrate 70

atmospheric CO2 observations and the fraction of absorbed
photosynthetically active radiation (FAPAR) recorded from
satellites, which constrains the seasonality of the phenology,
and assesses the relative effect of the constraint from these
two data streams on parameter values and modelled fluxes. 75

2 Description of MPI-CCDAS

2.1 CCDAS-Method

The MPI-CCDAS relies on a variational data assimilation ap-
proach to estimate a set of model parameters. In the following
we give a brief overview of this method, and refer for a de- 80

tailed description to Kaminski et al. (2013). To take account
of the uncertainty inherent in the description of observed
and simulated variables the method operates on probability
density functions (PDFs). It is conveniently formulated in a
Gaussian framework and uses the combined information pro- 85

vided by the model M(p) and the observations d to update a
PDF that describes the prior state of information on the pa-
rameter vector p (more precisely on the control vector, which
is a combination the model’s process parameters and of ini-
tial state variables). This prior control vector is described by 90

the mean ppr and the covariance of its uncertainty Cpr. The
update of the prior PDF is called posterior PDF and its mean
minimises the cost function J

J(p) =
1
2

(M(p)− d)T C−1
d (M(p)− d)

+ (p− ppr)T C−1
pr (p− ppr)

(1)

where Cd is the covariance of combined uncertainty in the 95

observations (with mean d) and model simulation. The min-
imum ppo of J (posterior control vector) thus balances the
misfit between modelled quantities and their observational
counterparts, while taking independent prior information on
the control vector into account. 100

Technically, J is minimized through an iterative proce-
dure using the Davidon-Fletcher-Powell algorithm in the
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∂p is evaluated by the
tangent-linear version of the model which was generated via
automatic differentiation (TAF: Giering and Kaminski 1998)5

of the model’s source code.

2.2 The forward model

The model that is optimised within the MPI-CCDAS is the
land surface model JSBACH (Raddatz et al., 2007; Brovkin
et al., 2009; Reick et al., 2013; Schneck et al., 2013; Dal-10

monech and Zaehle, 2013). It is typically used within the
MPI-ESM (Giorgetta et al., 2013) and calculates the terres-
trial storage of energy, water and carbon and its half-hourly
exchanges between the atmosphere and the land surface. The
variant of the model applied here is run uncoupled from15

the atmosphere and forced with reconstructed meteorology
(see Sec. 3). The model considers ten plant functional types
(PFTs: see Table 1). These PFTs are allowed to co-occur
within one grid cell on different tiles, but nonetheless share
a common water storage. Compared to the aforementioned20

JSBACH studies, the MPI-CCDAS does not use land-use
change and land-use transition nor dynamic vegetation, but
uses a multi-layer soil hydrology scheme (Hagemann and
Stacke, 2014).

The application of gradient-based minimisation proce-25

dures is facilitated by a differentiable implementation of
J(p). To improve differentiability, the original phenology
scheme, which describes the timing and amount of foliar area
based on logistic growth functions (Lasslop, 2011) was re-
placed by the alternative scheme developed explicitly for this30

purpose (Knorr et al., 2010) (see Sec. 2.2.1). Some further
minor modifications were necessary to make the code dif-
ferentiable. These changes included replacing look-up tables
with their continuous formulations, avoiding division by zero
in the derivative code (e.g. through evaluation of

√
0 in the35

forward mode), and reformulating minimum and maximum
calculations to allow a smooth transition at the edge. These
modifications alter the calculations, however, they were im-
plemented such that the differences in the modelled results
compared to the original code is minimal.40

2.2.1 Phenology-module

In the revised MPI-CCDAS phenology scheme (Knorr et al.,
2010), each plant functional type is assigned to a spe-
cific phenotype, implying limitations on phenology by water
(tropical and raingreen PFTs), water and temperature (herba-45

ceous PFTs) and temperature and daylight (extra-tropical
tree PFTs; see Table 1). The evolution of the leaf area index
Λ (LAI) on a daily time-step ∆t is described as

Λ(t+ ∆t) = Λlim− [Λlim−Λ(t)]e−r∆t (2)

Table 1. Plant functional types that are optimised and the limitations
that control the phenological behaviour of the respective functional
type.

Plant functional type Limitations

Tropical evergreen trees (TrBE)
Tropical deciduous (TrBS) Water
Raingreen shrubs (RS)

Coniferous evergreen trees (CE) Temperature
Extra-tropical deciduous trees (ETD) and
Coniferous deciduous (CD) Daylight

C3-grasses (TeH)
C3-crops (TeCr) Temperature
C4-grasses (TrH) and Water
C4-crops (TrCr)

with the inverse time scale r, which is defined as: 50

r = ξf + (1− f)/τl (3)

The parameter ξ describes the rate of initial leaf growth, and
the parameter τl describes how quickly leafs are shed. f spec-
ifies the stage of the vegetation being fully active at f = 1 or
fully dormant at f = 0 (see Eq. 5). Λlim is defined as: 55

Λlim = ξΛmaxf/r (4)

where the parameter Λmax is the maximum allowed LAI.
The scheme accounts for grid-cell heterogeneity by

smoothly varying the vegetation’s state f between the two
extremes. The transition is controlled either by the length of 60

the day td or a smoothly averaged temperature Tm with a
“memory”-time scale of 30 days (for details see Knorr et al.
(2010)).

f = Φ
(
Tm−Tφ
Tr

)
Φ
(
td− tc
tr

)
(5)

with the temperature control parameters Tφ, Tr and day- 65

length control parameters tc and tr and the cumulative nor-
mal distribution Φ.

Water limitation is incorporated by calculating a water-
limited maximum leaf area index ΛW that cannot be ex-
ceeded by the actual LAI: 70

ΛW =
WΛlast

EpotτW
(6)

with a water limitation time scale τW . The potential evapo-
ration Epot, the relative root-zone moisture W and the LAI
Λlast are taken from the previous day averages. ΛW is also
applied with a memory time-scale of 30 days, similar to tem- 75

perature and day length.
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2.2.2 Photosynthesis

Photosynthesis in JSBACH follows Farquhar et al. (1980) for
C3-plants and Collatz et al. (1992) for C4- plants, with de-
tails as described in Knorr and Heimann (2001) and Knorr
(1997). Net leaf CO2 uptake is the minimum of a carboxyla-5

tion limited photosynthesis rate JC and of electron transport
limited rate JE minus dark respiration Rd:

A=min{JC ,JE}−Rd (7)

The carboxylation limited rate is calculated as:

JC = Vm
Ci−Γ?

Ci +KC(1 +Ox/KO)
(8)10

with the leaf internal CO2-Concentration Ci, the oxygen
concentration Ox (0.21 mol/mol) and the CO2 compensa-
tion point (without dark respiration) Γ? = 1.7µmol/mol◦C∗
T which depends on temperature T (in ◦C). KC and KO are
the Michealis-Menten constants for CO2 and O2 and Vm is15

the maximum carboxylation rate. The latter three all depend
on the canopy temperature Tc (in K) in the form (exemplified
for Vm):

Vm = V cmax ∗ exp
(
EV T0

T1RgTc

)
(9)

with activation energy EV = 58520 Jmol−1, gas constant20

Rg = 8.314 JK−1mol−1. T1 = 298.16 ◦C is a reference
temperature and T0 = Tc−T1 the difference to this refer-
ence. V cmax is the maximal carboxylation rate at 25 ◦C and
is given in Table C1. Temperature dependence of KC and
KO are calculated with a similar approach with reference25

values at 25 ◦C for KC0 = 460 ∗ 10−6 mol/mol and KO0 =
330 ∗ 10−3 mol/mol and activation energies of EC = 59356
Jmol−1 and EO = 35948 Jmol−1, respectively.

The electron transport limited rate, JE , is calculated as

JE = J
Ci−Γ?

4(Ci− 2Γ?)
(10)30

with

J =
αIJm√
J2
m +α2I2

(11)

and the photon capture efficiency α= 0.28
mol(electrons)/mol(photons), the absorption rate of
photosynthetically active radiation I , and the limiting rate35

constant Jm with a temperature dependence:

Jm = Jmax ∗T/25◦C (12)

Jmax is the maximum rate of electron transport at 25 ◦C (Ta-
ble C1).

Photosynthesis for C4-plants follows Collatz et al. (1992)40

and is the minimum among the three limiting rates Je = Vm,

Jc = kCi and Ji = αiI with the quantum efficiency αi =
0.04 and k:

k = Jmax ∗ 103exp

(
EKT0

T1RgTc

)
(13)

with EK = 50967 Jmol−1. 45

Dark respiration is modelled depending on V cmax accord-
ing to

Rd = frC3|C4 ∗V cmax ∗ exp
(
ERT0

T1RgTc

)
(14)

with activation energy ER = 45000 Jmol−1, and frC3|C4 =
0.011|0.031 for C3 and C4 plants, respectively. Dark respi- 50

ration is reduced to 50% of its value during light conditions
(Brooks and Farquhar, 1985).

Photosynthesis and dark respiration are inhibited above
55◦C. Calculations are performed per PFT and three distinct
canopy layers, which vary in depth according to the current 55

leaf area index, assuming that within the canopy nitrogen,
and thus V cmax, Jmax, and Rd decline proportionally with
light levels in the canopy. PFT values are integrated to grid-
cell averages according to the cover fractions of each PFT
within each grid-cell. 60

2.2.3 Carbon-water coupling

JSBACH employs a two-step approach to couple the plant
carbon and water fluxes (Knauer et al., 2015). Given a
photosynthetic-pathway dependent specific maximal internal
leaf CO2 concentration (Ci), a maximal estimate of stomatal 65

conductance (gspot) is derived for each canopy layer, which
is then reduced by a water-stress factor (ws) to arrive at the
actual stomatal conductance (gsact) (see Knorr, 1997, 2000,
and references therein).

gsact = ws ∗ gspot = ws ∗ 1.6 ∗ A

Ca−Ci
(15) 70

where Ca and Ci are the external and internal leaf CO2

concentrations. The water-stress factor ws is defined as

ws =min

(
Wroot−Wwilt

Wcrit−Wwilt
,1
)

(16)

where Wroot is the actual soil-moisture in the root zone,
and Wcrit|wilt define the soil moisture levels at which stom- 75

ata begin to close, or reach full closure, respectively. Soil
moisture and bare soil evaporation are calculated according
to the multi-layer soil water scheme of Hagemann and Stacke
(2014).

Given the water-stressed stomatal conductance, leaf inter- 80

nal CO2 concentration and carbon assimilation are then re-
calculated for each canopy layer by solving simultaneously
the diffusion equation and the photosynthesis equations as
outlined above (Sec. 2.2.2)
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2.2.4 Land carbon pools, respiration and turnover

The vegetation’s net primary production (NPP) is related to
the net assimilation (A) as

NPP =A−Rm−Rg (17)

where Rg is the growth respiration, which is assumed to be5

a fixed fraction (20%) of A−Rm. Rm is the maintenance
respiration, which is assumed to be coordinated with foliar
photosynthetic activity, and thus scaled to leaf dark respira-
tion via faut_leaf (Knorr, 2000)

Rm =
Rd

faut_leaf
(18)10

with the dark respiration Rd as given in Eq. 14. As a con-
sequence, an increase in f_aut_leaf leads to an increase in
NPP.

NPP is allocated to either a green or woody pool given
fixed, PFT-specific allocation constants. The green pool turns15

over to litter according to the leaf phenology, whereas the
woody turnover is prescribed as a fixed constant.

JSBACH considers three litter pools (above ground green,
below ground green and woody) with distinct, PFT-specific
turnover times, as well as a soil organic matter pool with a20

longer turnover time. Heterotrophic respiration for each of
these pools responds to temperature according to a Q10 for-
mulation:

Rpool = αresp ∗Q(T−Tref )/10
10 /τpool ∗Cpool (19)

with a soil-moisture dependent factor 0<= αresp <= 1.25

Cpool is either the slow soil carbon pool, above or below
ground green litter or wood litter pool and T is tempera-
ture and Tref = 0◦C the reference temperature and a pool
depended turnover rate τpool (more details on the carbon bal-
ance sub-module can be found in Goll et al., 2012).30

2.2.5 Atmospheric transport

To map the net land-atmosphere CO2 exchange simulated
by JSBACH to observations of the atmospheric CO2-mole
fraction, the computation of atmospheric transport is re-
quired. The transport model TM3 (Heimann and Körner,35

2003) is used for that. Specifically we compute the response
of monthly mean CO2 mole fractions to monthly mean sur-
face fluxes (extending 2 years back in time) and multiply
these transport matrices (or Jacobians) with the net CO2 ex-
change as in Rödenbeck et al. (2003). The net exchange is the40

sum of the terrestrial fluxes computed by JSBACH and pre-
scribed ocean and fossil fuel fluxes. The mole fraction at the
beginning of this simulation is specified as a globally con-
stant offset COoffset2 , one of the parameters to be estimated.
The resulting CO2-mole fractions can then be directly com-45

pared with observed atmospheric CO2.

2.3 Model parameters

In the presented set-up, JSBACH parameters related to the
phenology, photosynthesis and land carbon turnover (includ-
ing initial carbon stocks) are estimated. The default prior 50

value and assumed prior uncertainty (with Gaussian distribu-
tion) of each parameter, as well as posterior values from the
assimilation experiments are given in Table 2. The choice of
these parameters was based on an extensive parameter sensi-
tivity study on a much larger set of parameters across mul- 55

tiple biomes (Schürmann, unpublished results). We retained
those parameters, for which we found a significant effect on
modelled FAPAR and net CO2 exchange. In principle, it is
possible to add more parameters, which are decisive for other
modelled quantities such as soil moisture and which might 60

feed back to our observables.
The parameters controlling the phenology (Λmax, 1/τl,

τw, Tφ and tc) are allowed to take different values for differ-
ent plant functional types with the exception of ξ, which is
valid globally. Their parameter prior values and uncertainties 65

are taken from Knorr et al. (2010), with the following three
exceptions: the water control parameter τw required an adap-
tation to account for the different soil-water formulations in
the MPI-ESM compared to BETHY, 1/τl for the coniferous
evergreen (CE) PFT also has been adapted after preliminary 70

site-scale studies to allow more flexibility in the seasonality
of the evergeen-phenology (Schürmann, unpublished results)
and, finally, Λmax is left to its default JSBACH parameter
value for all PFT’s with the exception of the coniferous ever-
green (CE) PFT. For this PFT a value of Λmax = 1.7m2/m2

75

has been used, because preliminary model tests revealed a
large bias in modelled FAPAR in CE-dominated regions (see
also Sect. 5.3.2).

To estimate gross assimilation directly, maximum car-
boxylation rate V cmax and maximum electron transport 80

Jmax are allowed to change per plant functional type. We
reduce the number of parameters to be estimated, assuming
that the observed tight correlation between V cmax and Jmax
is conserved irrespective of the precise value for each PFT
(Kattge and Knorr, 2007). Thus, we introduce a single scal- 85

ing coefficient fphotos:

V cmax = V cpriormax ∗ fphotos (20)

Jmax = Jpriormax ∗ fphotos (21)

Prior parameter ranges for each PFT were derived from the
TRY data-base Kattge et al. (2011). 90

The prior sensitivity studies revealed that the most influen-
tial parameters controlling C storage on land and partition-
ing between autotrophic and heterotrophic respiration were
the leaf fraction of maintenance respiration (faut_leaf ) and
temperature response (Q10) of the carbon pools, which were 95

both included as parameters. In addition, we accounted for
non steady-state conditions of the net carbon flux by estimat-
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6 Schürmann et al.: MPI-CCDAS

Table 2. Parameters that are part of the control vector with their prior and posterior values of the global assimilation experiments. Parameters
marked with a ∗ are multiplied with their respective value in the model, given in Table C1. The mapping variants are explained in the appendix
B: 1: No lower bound; 2: A lower bound at 0 for those parameters that are not allowed to take negative values.

Parameter(PFT) Description
Prior
sigma Prior JOINT CO2alone FAPARalone Unit Mapping

Λmax (TrBE)∗ Maximum LAI 0.2 1 0.98 0.82 0.84 . 2
Λmax (TrBD)∗ Maximum LAI 0.2 1 0.58 0.55 0.63 . 2
Λmax (ETD)∗ Maximum LAI 0.2 1 0.98 1.04 1.44 . 2
Λmax (CE)∗ Maximum LAI 0.2 1 1.00 0.84 1.01 . 2
Λmax (CD)∗ Maximum LAI 0.2 1 0.64 1.31 0.56 . 2
Λmax (RS)∗ Maximum LAI 0.2 1 1.33 0.94 1.24 . 2

Λmax (TeH,TeCr)∗ Maximum LAI 0.1 1 0.63 0.53 0.61 . 2
Λmax (TrH,TrCr)∗ Maximum LAI 0.1 1 0.53 0.49 0.59 . 2

1/τl (ETD) Leaf shedding time scale 0.01 0.07 0.057 0.057 0.079 d−1 2
1/τl (CE) Leaf shedding time scale 1e-04 5e-04 0.00067 0.00045 0.00064 d−1 2
1/τl (CD) Leaf shedding time scale 0.01 0.07 0.068 0.07 0.068 d−1 2

1/τl (TeH,TeCr) Leaf shedding time scale 0.01 0.07 0.098 0.076 0.079 d−1 2
1/τl (TrH,TrCr) Leaf shedding time scale 0.01 0.07 0.077 0.07 0.07 d−1 2
τw (TrBE) Water stress tolerance time 30 300 319.82 378.04 286.77 days 2
τw (TrBD) Water stress tolerance time 10 114 107.78 120.84 106.29 days 2
τw (RS) Water stress tolerance time 5 50 49.51 50.02 47.82 days 2

τw (TeH,TeCr) Water stress tolerance time 25 250 222.32 215.22 230.41 days 2
τw (TrH,TrCr) Water stress tolerance time 25 250 276.06 236.32 286.64 days 2
Tφ (ETD) Temperature at leaf onset 1 9.21 7.19 8.63 2.28 ◦C 1
Tφ (CE) Temperature at leaf onset 1 9.21 7.53 9.01 7.61 ◦C 1
Tφ (CD) Temperature at leaf onset 1 9.21 0.10 5.53 0.30 ◦C 1

Tφ (TeH,TeCr) Temperature at leaf onset 0.5 1.92 3.82 2.67 2.78 ◦C 1
Tφ (TrH,TrCr) Temperature at leaf onset 0.5 1.92 2.50 1.57 1.88 ◦C 1
tc (ETD) Day length at leaf shedding 1 13.37 13.57 13.84 13.60 hours 2
tc (CE) Day length at leaf shedding 1 13.37 14.22 13.69 14.12 hours 2
tc (CD) Day length at leaf shedding 1 13.37 14.94 13.66 14.73 hours 2
ξ Initial leaf growth rate 0.03 0.37 0.41 0.38 0.43 d−1 2

fphotos (TrBE)∗ Photosynthesis rate modifier 0.1 1 0.75 1.02 0.91 . 2
fphotos (TrBD)∗ Photosynthesis rate modifier 0.1 1 1.07 1.08 0.97 . 2
fphotos (ETD)∗ Photosynthesis rate modifier 0.02 1 0.99 1.00 1.00 . 2
fphotos (CE)∗ Photosynthesis rate modifier 0.03 1 0.95 1.00 1.00 . 2
fphotos (CD)∗ Photosynthesis rate modifier 0.06 1 1.04 1.05 1.00 . 2
fphotos (RS)∗ Photosynthesis rate modifier 0.1 1 1.01 1.05 1.00 . 2
fphotos (TeH)∗ Photosynthesis rate modifier 0.1 1 0.96 1.01 0.99 . 2
fphotos (TeCr)∗ Photosynthesis rate modifier 0.1 1 0.67 0.86 1.00 . 2
fphotos (TrH)∗ Photosynthesis rate modifier 0.1 1 1.04 1.02 1.06 . 2
fphotos (TrCr)∗ Photosynthesis rate modifier 0.1 1 0.87 0.94 1.00 . 2

Q10 Temperature sensitivity of resp. 0.15 1.8 1.90 1.81 1.80 . 2
fslow Multiplier for initial slow pool 0.1 1 0.50 0.51 1.00 . 2

faut_leaf Leaf fract. of maintenance resp. 0.1 0.4 0.30 0.35 0.40 . 2
COoffset2 Initial atmospheric carbon 3 0 0.90 0.85 0.00 ppm 1
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ing a global scaling factor for the size of the initial slow pool
fslow, the same approach as used by Carvalhais et al. (2008).
This allows for the modification of global heterotrophic res-
piration and hence also an adjustment of the CO2 growth
rate, but the limitation is that this does not change the spatial5

distribution of carbon pools, which remains controlled by the
prior parameter values. The turnover-time parameters (see
Eq. 19) were not included in the assimilation experiment, be-
cause their impact on land carbon fluxes was small compared
to other parameters (Schürmann, unpublished results) at the10

time-scale of the MPI-CCDAS (a couple of years). To give
flexibility to the assimilation system for the initial carbon
content of the atmosphere, one single offset value COoffset2

is included in the set of estimated parameters. The uncer-
tainties of these last parameters (Q10, faut_leaf , fslow and15

COoffset2 ) are based on expert knowledge.
Further, uncertainties on all parameters were assumed to

be Gaussian and exposed to the assimilation procedure in a
form normalized by their prior uncertainty. In order to pre-
vent parameters from attaining physically impossible, nega-20

tive values, some parameters were constrained at the lower
end of the distribution to zero (see Table 2 and appendix B).

2.4 Observational constraints and observation
operators

2.4.1 Atmospheric CO225

Observed atmospheric CO2 mole fractions were obtained
from the flask data/continuous measurements provided by
different institutions (e.g. flask data of NOAA/CMDL’s sam-
pling network, update of Conway et al. 1994, Japan Meteo-
rological Agency - JMA, Meteorological Service of Canada -30

MSC, and many others; see Rödenbeck et al. 2003). Stations
were selected in order to cover representatively a latitudinal
gradient (Table A1), focussing on remote locations with lit-
tle imprint of local fluxes. For cross-evaluation, a wider set
of available station data were used (Table A2). The temporal35

resolution of the CO2 original data at the monitoring stations
(hourly to daily/weekly) depends on the specific station and
were averaged into monthly means.

For our analysis, we used the Jacobian representation of
the TM3 model, version 3.7.24 (Rödenbeck et al., 2003),40

with a spatial resolution of about 4◦x5◦ (the “fine” grid of
TM3 by Heimann and Körner 2003), driven by interannually
varying wind fields of the NCEP reanalysis (Kalnay et al.,
1996). The MPI-CCDAS compares atmospheric CO2 at a
monthly temporal resolution, considering the sampling of45

simulated CO2 abundance at the same time in which mea-
surements were available in order to reduce the representa-
tion bias. The treatment of the observations of CO2 and their
uncertainties are done as in Rödenbeck et al. (2003). A floor
value of 1 ppm is added to this uncertainty, similarly as in50

Rayner et al. (2005). Ancillary flux fields at monthly reso-
lution were used to represent the ocean (Jena CarboScope

pCO2-based mixed layer scheme oc_v1.0 Rödenbeck et al.,
2013) and fossil fuel (Emissions Database for Global Atmo-
spheric Research EDGAR; http://edgar.jrc.ec.europa.eu) net 55

CO2 fluxes.

2.4.2 TIP-FAPAR

The observations of FAPAR that have been assimilated were
specifically derived for this study by the Joint Research Cen-
tre Two-stream Inversion Package (JRC-TIP, Pinty et al. 60

2007). The product was derived by running JRC-TIP on
MODIS broadband visible and near-infrared white sky sur-
face albedo input aggregated to the model grid separately for
snow-free and snow-like background conditions in a similar
way as described for the native 0.01 degree product (Pinty 65

et al., 2011a, b; Clerici et al., 2010; Voßbeck et al., 2010).
Uncertainties in the FAPAR data are based on rigorous un-
certainty propagation using first and second derivative infor-
mation (Voßbeck et al., 2010).

We apply two filters on the global FAPAR product to as- 70

sure that potential model structural errors do not lead to com-
pensating effects in the parameter estimation procedure and
thus impede fitting the FAPAR data in other regions. First,
owing to the fact that no specific crop-phenology is imple-
mented in JSBACH, grid cells with fractional crop coverage 75

of more than 20 % have been filtered out, as we cannot ex-
pect the model to fit cropland phenology. Second, grid-points
with correlations between the prior model and the observed
FAPAR below 0.2 (i.e. prior phenology exhibits out-of-phase
seasonal cycles) have also been filtered out. Together, these 80

filters reduce the overall global coverage of the FAPAR-
constraint and thus the number of observations to be fitted
(Fig. 1) by 57 %.
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Figure 1. Location of the CO2 observations (for constraining the
model and for evaluation) and the median over the time series of
the TIP-FAPAR uncertainties in each pixel acting as constraint
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3 Experimental set-up

The MPI-CCDAS is driven by daily meteorological forcing
(air temperature, specific humidity, precipitation, downward
short- and longwave radiation, wind speed) obtained from
the WATCH forcing data set (Weedon et al., 2014). Annual5

CO2 mole fractions of the atmosphere as a forcing for the
photosynthesis calculations of JSBACH were prescribed ac-
cording to Sitch et al. (2015). Vegetation distribution (Fig.
D1) and other surface characteristics are derived from Pon-
gratz et al. (2008). For computational efficiency, we have10

set-up the MPI-CCDAS at a coarse spatial resolution (the
“coarse” grid of TM3 by Heimann and Körner 2003 with
about 8◦x10◦), although the MPI-CCDAS is flexible to be
run at any computationally feasible spatial resolution.

For the water and carbon cycle state-variables of JSBACH15

the following spin up procedure was applied: First, an equi-
librium was achieved through an integration over the period
1979-1989 with corresponding meteorological forcing and
atmospheric CO2 mole fractions of 1979. From this equilib-
rium state a transient integration from 1979 to 2003 followed.20

The final state of 2003 was then taken as the initial condi-
tion for all MPI-CCDAS experiments. This spin-up proce-
dure used the prior parameter values, i.e. it was not part of
the assimilation loop for the parameter estimation. To allow
a direct control of the non-equilibrium states of the carbon25

pools, the initial slow pool (at the end of the spin-up proce-
dure) was multiplied by a global scaling factor that is part of
the parameter estimation procedure (see Sect. 2.3).

The MPI-CCDAS itself was run for the years 2003 - 2011,
i.e. parameters were left free to adapt to the observational30

constraints. The first two years allowed the system to build
a spatial gradient in the simulated CO2 mole fractions. In
the following years (2005 and 2009) the observational con-
straints were active whereas for the consecutive two years
(2010/2011) the constraints were inactive and the observa-35

tions of these years serve for evaluation purposes (hindcast-
ing). As evaluation statistics we used the correlation, bias,
root mean squared error and the Nash-Sutcliffe model effi-
ciency (NSE) which is defined as:

NSE = 1−
∑
i (di−mi)

2

∑
i

(
di− di

)2 (22)40

with model m, observation d, the index i for individual pairs
of observation and model output and an overbar denoting the
arithmetic mean.NSE = 1 indicates a perfect model and for
all NSE < 0 the mean of the observations is a better predic-
tor than the model itself.45

Our study follows a factorial design to assess the benefit
of each data stream, but also to evaluate the potential of as-
similating more than one data stream and its effect on the
carbon cycle. Therefore, we conducted three experiments: an
experiment assimilating each data stream alone (CO2alone50

using only CO2 and FAPARalone using only TIP-FAPAR)

and one experiment assimilating both data streams simulta-
neously (JOINT), with each data stream equally weighted.

4 Results

4.1 Performance of the assimilation 55

The application of the MPI-CCDAS to the given prob-
lem was successful within an appropriate number of iter-
ations (with run-times of 1 - 2 months), increasing from
FAPARalone (using only TIP-FAPAR), to CO2alone (using
only CO2), and JOINT (using both observations simultane- 60

ously as a constraint; Table 3): For all three assimilation ex-
periments, the value of the cost-function was considerably
reduced, while the posterior parameter values remained in
physically plausible ranges, even though a few (e.g.: Tφ of
the coniferous deciduous phenotype) deviate strongly from 65

the prior values (Table 2). For FAPARalone, the cost was al-
most halved between prior and posterior run. Yet stronger
reductions of the cost were obtained in the other two exper-
iments using also CO2 (Table 3). Interestingly, the posterior
cost of the JOINT assimilation roughly equals the sum of 70

the single data-stream experiments, indicating consistency of
the model with both data streams. Several statistics compar-
ing the posterior model with observations for FAPAR and
CO2 (Tables 4 and 5) show that the model performance of
the JOINT experiment was comparable to the performance of 75

the two single data-stream experiments relative to the assim-
ilated quantity. While the JOINT assimilation captured the
main features of both data sources, the single data-stream as-
similation experiments either showed no improvement with
respect to the other data stream (such as the CO2alone case 80

for FAPAR), or even a degradation (such as the FAPARalone
case for CO2). Overall, these results suggest that both data
streams can be successfully assimilated jointly with the MPI-
CCDAS.

During the assimilation procedure, the norm of the gradi- 85

ent1 was considerably reduced by 3 - 4 orders of magnitude
(Table 3). The behaviour was such that in the first tens of iter-
ations, the assimilation considerably reduced the cost as well
as the norm of the gradient. The parameter values changed
the most in this initial phase of the assimilation. However, 90

they also changed in later iterations without substantial re-
ductions in the cost function or the norm of the gradient. The
assimilation then finally stopped because the changes to the
parameters were too small. Notably, the norm did not ap-
proach zero for the cases using CO2 as a constraint, as would 95

have been expected for the minimum of the cost-function.
This is an indication that for these experiments our posterior
parameter estimate does not yet minimize the cost function: a
point also mentioned by Rayner et al. (2005) with respect to
their CO2 assimilation with the BETHY-CCDAS. In the fol- 100

1The norm of a vector v is: ‖v‖=
√
v ∗ v
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Table 3. Characteristics of the assimilation experiments. The prior and posterior cost-function values and the contribution of FAPAR, CO2

and the prior (second term in Eq. 1) to the posterior cost-function value are given as well as the norm of the gradient and the number of
observations acting as a constraint and the number of iterations of the assimilation

Experiment
name

Prior
cost

Posterior
cost

FAPAR
cost

CO2

cost
Parameter

cost
Prior norm

of the gradient
Posterior norm
of the gradient

Number of
observations

Number of
iterations

CO2alone 1922 344 0 287 57 12196 14.8 1524 69
FAPARalone 1431 723 626 0 97 208 0.7 3189 29
JOINT 3352 1102 682 309 112 12162 6.1 4713 69

lowing we discuss the performance of the assimilation with
respect to FAPAR and CO2 in detail.

4.2 Phenology

The statistics of the comparison with the TIP-FAPAR data
sets shows an improvement of the model-data fit for all ex-5

periments relative to the prior model (Table 4), which as ex-
pected is strongest when using FAPAR (FAPARalone and
JOINT) as a constraint.

One important aspect in the improvement was a general,
time-averaged, reduction in modelled FAPAR simulated by10

the MPI-CCDAS compared to the prior run. This change in
FAPAR was mostly driven by a reduction of foliar area of
0.41 m2m−2 on average for the JOINT experiment (0.34
m2m−2 for FAPARalone and 0.59 m2m−2 for CO2alone).
Almost all PFTs contributed to the decrease in FAPAR fol-15

lowing a reduction in the maximum leaf area index (parame-
ter Λmax) for tropical deciduous forests, needle-leaf decidu-
ous forests, as well as herbaceous PFTs (crops and grasses).
The water-stress parameter τw played a secondary role in the
reduction, affecting the maximum leaf-area for drought re-20

sponsive phenologies (see Table 1). The concurrent increase
of foliar area for extra-tropical deciduous and rain green
shrubs only plays a minor role in the model-data agreement,
since these PFTs only cover a small fraction of the global
land area.25

In regions with a strong temperature control of phenology,
the assimilation did not only change the magnitude of the
phenological seasonal cycle, but also its timing, reflected in
the improved correlation and model efficiency of the MPI-
CCDAS with respect to the TIP-FAPAR data (Table 4). This30

improvement was mostly the result of adjusting the param-
eters Tφ and tc, which denote temperature and day-length
criteria that determine when the vegetation alters from the
dormant to the active phase. The reduction of the temperature
control parameter Tφ leads to an earlier onset of the growing35

season in the extra-tropical deciduous broadleaf and decidu-
ous needleleaf PFTs. For the deciduous evergreen forests the
assimilation procedure also resulted in an earlier end of the
growing season (see Fig. 2 for an example). For the other
PFTs, these parameters changed not as pronounced, lead-40

ing to no notable difference in the phenological timing - at
least not at the analysed monthly temporal resolution. No-

tably, also the CO2alone experiment shows some improve-
ment in the correlation and model efficiency compared to
TIP-FAPAR, although this experiment did not use the TIP- 45

FAPAR data as a constraint. This suggests that the seasonal
cycle of CO2 bears some constraint on the timing of North-
ern extra-tropical phenology.

While the FAPARalone assimilation run performs best
compared with TIP-FAPAR (Table 4), the FAPARalone and 50

JOINT assimilation runs are fairly similar (though not iden-
tical) with respect to the simulated FAPAR. The temporally
averaged LAI (Fig. 3) demonstrates the overall similarity be-
tween the FAPARalone and JOINT experiments. This simi-
larity is also reflected in the parameter values of the phenol- 55

ogy: the parameters of FAPARalone and JOINT often were
closer to each other than to CO2alone (Table 2). However,
the values are not necessarily the same, because different pa-
rameter combinations can lead to fairly similar results (also
known as equifinality). This can happen when (i) certain pa- 60

rameters enter an insensitive regime where parameter differ-
ences do hardly propagate to the modelled foliar area, (ii)
mixed pixels are a composite of different plant functional
types that can show compensating effects, and (iii) the CO2

constraint may still impose an additional weight on changing 65

FAPAR because of the feedbacks on photosynthesis. An ex-
ample for this is the tropical evergreen tree PFT, for which
parameters of the JOINT and FAPARalone experiment are
different while the modelled foliar area is very similar. A fur-
ther explanation for this feature highlighting the importance 70

of multi-data stream assimilation is given in Sec. 4.4.1. The
most pronounced differences between the JOINT and FA-
PARalone experiment, leading also to the differences in the
globally averaged foliar area, arose at locations where TIP-
FAPAR data were not used as constraints in e.g. crop dom- 75

inated pixels (where also the extra-tropical deciduous tree
(ETD) PFT covered a substantial part of the grid-cell).

Larger differences were reached between the CO2alone
and JOINT experiments (Table 4 and Fig. 3). CO2alone
shows the smallest LAI, and thus the smallest FAPAR. This 80

feature is especially pronounced in tropical regions, where
the decrease is driven by the water-control parameter τw and
the maximum foliar area Λmax. This pattern is countered by
larger foliar area than the JOINT experiment for coniferous
deciduous trees, driven by the parameter Λmax which is in- 85

creased for CO2alone, but decreased for the other two ex-
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Figure 2. Example time-series of FAPAR for an East Siberian pixel dominated by the CD-PFT to demonstrate the improvement in the timing
of the phenology after the assimilation. TIP-FAPAR observations are given with their 1-σ uncertainties
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Figure 3. Temporally averaged global LAI of the JOINT experiment and differences of the other experiments to the JOINT case.
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Table 4. Performance of the prior and posterior models compared with TIP-FAPAR observations (applying the same data quality screening
as for the assimilation). The assimilation period (2005 - 2009) as well as a subsequent evaluation period (2010/2011) is shown. Abbreviations
are: Corr: Correlation, RMSE: Root mean squared error, NSE: Nash Sutcliffe model efficiency.

2005 - 2009 2010/2011
Corr Bias RMSE NSE Corr Bias RMSE NSE

PRIOR 0.60 0.069 0.19 0.10 0.61 0.075 0.19 0.12
CO2alone 0.66 -0.072 0.17 0.31 0.67 -0.074 0.17 0.31
FAPARalone 0.72 -0.014 0.14 0.51 0.73 -0.013 0.14 0.52
JOINT 0.71 -0.022 0.14 0.49 0.72 -0.022 0.14 0.50

periments. A likely explanation of this behaviour is given in
Sect. 4.4.2.

4.3 Atmospheric CO2

The assimilation procedure strongly reduced the misfit be-
tween observed and modelled atmospheric mole fraction of5

CO2 when using CO2 as a constraint (Table 5). This was true
for the seasonal cycle, the seasonal cycle’s amplitude and the
5-years trend (Fig. 4 and 5). Conversely, the FAPARalone
experiment showed a strong deterioration of the simulated
atmospheric CO2 compared to the prior model, leading to10

a much faster increase in CO2 than observed (Table 5 and
Fig. 4). The deterioration of the 5-years trend of atmospheric
CO2 in the FAPARalone case occurred notwithstanding the
improvement of the seasonal cycle amplitude of atmospheric
CO2 (Fig. 5). Notably, introducing TIP-FAPAR as an addi-15

tional constraint in the JOINT experiment did not deteriorate
the fit to the observed CO2. Rather, the simulated monthly
CO2 mole fractions of the JOINT and CO2alone experiment
are almost identical for most sites (Table 5 and Fig. 4 and 5).

The improvement of the simulated atmospheric CO2 for20

the CO2alone and JOINT assimilation run persisted for the
two years following the assimilation period, in which the
model was run in a hindcast mode (driven by reconstructed
meteorology), with only minor degradation in model perfor-
mance (Table 5). Both experiments clearly outperform the25

prior model, which is most obvious in the improvement of
the Nash-Sutcliffe model efficiency for the hindcast period.

The comparison of the simulated posterior atmospheric
CO2 mole fractions at the evaluation stations showed a gen-
eral improvement in the performance measures, with sub-30

stantial improvements in the simulated bias, RMSE and
Nash-Sutcliffe model efficiency relative to the prior model
(Table 5). Unlike for the set of calibration sites, there was no
difference in the improvement between the assimilation pe-
riod and the subsequent two-year period, suggesting that the35

model improvement is of general nature. In other words, the
prognostic capabilities of the model have been largely im-
proved after assimilating CO2-observations, also at the eval-
uation locations.
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Figure 4. Time series of CO2 as observed at the high latitude evalu-
ation site Summit and at two constraining sites, one at high latitudes
(Alert) and one representative for the Northern Hemisphere (Mauna
Loa) for the different prior and posterior models. The observations
are given together with their uncertainty.

4.3.1 Changes in C fluxes causing the changes in 40

simulated CO2

The changes in simulated atmospheric CO2 mole fractions
originate from substantial changes of the seasonal ampli-
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Table 5. Performance of the prior and posterior models compared with atmospheric CO2 for constraining and evaluation sites and for the
assimilation period (2005 - 2009) and the hindcast period (2010/2011). Abbreviations are: Corr: Correlation, RMSE: Root mean squared
error, NSE: Nash Sutcliffe model efficiency.

2005 - 2009 2010/2011
Corr Bias RMSE NSE Corr Bias RMSE NSE

Stations acting as constraint
PRIOR 0.95 0.64 2.60 0.68 0.93 4.85 5.22 -0.69
CO2alone 0.96 -0.05 1.32 0.92 0.93 0.10 1.47 0.87
FAPARalone 0.91 8.91 9.84 -3.63 0.91 18.21 18.35 -19.86
JOINT 0.96 -0.09 1.35 0.91 0.93 -0.16 1.48 0.87

Stations withheld from assimilation
PRIOR 0.86 1.20 3.83 0.52 0.84 5.18 6.03 -0.61
CO2alone 0.89 0.25 2.54 0.79 0.89 0.19 2.19 0.79
FAPARalone 0.84 9.73 10.84 -2.87 0.86 18.89 19.12 -15.14
JOINT 0.88 0.24 2.61 0.78 0.88 -0.05 2.28 0.77

Table 6. Global averages of selected carbon cycle components in PgC yr−1 for fluxes and PgC for stocks and comparison with other
estimates. Ra: autotropic respiration. Rh: heterotrophic respiration. Reco: ecosystem respiration.

PRIOR CO2alone FAPARalone JOINT Other estimates Other CCDAS

NPP 65.5 40.9 53.5 45.6 44− 66a 40g

Ra 86.1 57.6 67.8 65.7
Rh 64.5 37.6 55.4 42.2
Reco 150.6 95.2 123.2 107.9
GPP 151.6 98.4 121.3 111.3 119± 6b,123± 8c 109− 164h

NBP 1 3.2 -2.2 3.2 2.4± 0.8d

Soil Carbon 2649 1064.7 2187.1 1122.3 1343e

Vegetation Carbon 424 388.5 420.5 407.3 442± 146f

Litter Carbon 239.9 189.8 212.8 193.9

aCramer et al. (1999); Saugier and Roy (2001); bJung et al. (2011); cBeer et al. (2010); dLe Quéré et al. (2015);
ehttp://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/; fCarvalhais et al. (2014); gRayner et al. (2005); hKoffi
et al. (2012)

tude and the strength of the net carbon fluxes of JSBACH.
The application of the CO2-constraint increased the global
net biome production (NBP) from 1.0 PgCyr−1 in the
prior model to 3.2 PgCyr−1 in the CO2alone and JOINT
experiments, whereas it decreased the net uptake to -2.25

PgCyr−1 for the FAPARalone case, turning the biosphere
into a net source (Table 6). While the atmospheric observa-
tions constrain the net land-atmosphere CO2 flux, the MPI-
CCDAS model parameters affect the gross-fluxes, and thus
the changes in NBP are again the consequence of substan-10

tially altered gross fluxes and land carbon pools.
The generally reduced foliar area directly leads to a re-

duced gross primary production (GPP) of the terrestrial bio-
sphere. The changes to the photosynthetic capacity (fphoto)
(Table 2) often further reduce the uptake, a factor which15

is most pronounced for crop and tropical evergreen PFTs
(Table 6 and Table 2). The GPP reduction is strongest for

the CO2alone experiment and weakest (but still very pro-
nounced) for FAPARalone. Even though the globally inte-
grated posterior GPP values were somewhat different, the 20

relative latitudinal patterns were fairly similar to each other
(Fig. 6), and the reduction occurred in all regions, predomi-
nantly in tropical forests and grass/crop dominated temperate
and boreal zones (Table 2).

Since the net carbon fluxes in the FAPARalone experi- 25

ment were not constrained by the atmospheric CO2 obser-
vations, the assimilation did not adjust the ecosystem res-
piration to balance the reduced productivity. This mismatch
leads to the overestimation of the growth rate of atmospheric
CO2. On the time scales of 5 years involved in this study, the 30

respiration was not as much reduced as GPP by the adjust-
ments and as a consequence the net flux to the atmosphere
increased. Application of the CO2 constraint forces the res-
piration to be reduced as well to match the atmospheric sig-
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Figure 5. Latitudinal distribution of atmospheric CO2 seasonal cy-
cle amplitude, calculated as the difference between the maximum
and minimum CO2 mole fraction of the averaged seasonal cycle of
the linearly de-trended signal from 2005 - 2009.
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Figure 6. Latitudinal distribution of GPP for the prior and posterior
models and comparison with the estimates of Jung et al. (2011).

nal. Since JSBACH models autotrophic respiration as a func-
tion of GPP (Eq. 18), which thus equilibrates quickly to any
changes in GPP, the reduction in heterotrophic respiration is
mainly driven by a reduction of the initial soil carbon pool
to 50% and 51% for the JOINT and CO2alone experiment,5

respectively (Table 6).
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Figure 7. Temporally averaged NBP of the JOINT assimilation, dif-
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distribution for the prior and posterior models.

Despite the similarity of the global NBP for the experi-
ments with CO2 as a constraint, the spatial patterns of the
NBP are different between the CO2alone and JOINT experi-
ments (Fig. 7). The net uptake in both experiments originates 10

from boreal and tropical regions. While the JOINT exper-
iment shows an uptake in the boreal regions of coniferous
evergreen and coniferous deciduous dominated pixels, the
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CO2alone uptake is even more concentrated to the conifer-
ous deciduous regions. These differences will be further dis-
cussed in Sect. 4.4.2.

4.4 Regional differences among the experiments

In the following we focus on differences in the spatial pat-5

terns of the results obtained for tropical regions and the bo-
real zone to highlight the interplay between parameters in
a global, multi-data stream application of the MPI-CCDAS
either by compensating effects between different model pro-
cesses within one PFT as occurring in the tropics (Sect. 4.4.1)10

or by compensations between different parts of the globe
(Sect. 4.4.2).

4.4.1 Tropics

The modelled foliar area in the tropics (mainly the tropi-
cal evergreen tree PFT) was similar for the JOINT and FA-15

PARalone experiments (Fig. 3), but smaller for CO2alone.
Notwithstanding the difference in foliar area, the net land-
atmosphere CO2 exchange (Fig. 7) of the JOINT experiment
was closer to the posterior estimate of CO2alone than to that
of FAPARalone in terms of absolute values. GPP (Fig. 6)20

lies between the two single data stream experiments, being
closer to FAPARalone. This result was caused by compen-
sating effects of the different observational constraints (Fig.
8 and Table 2): the phenological parameters, notably τw and
Λmax, were substantially different between the FAPARalone25

and JOINT experiment, yet their modelled foliar area was
very similar (Fig. 3). The reason for this was that the pho-
tosynthesis parameter modifier fphotos was reduced strongly
in the JOINT experiment, which also drives the smaller GPP
(relative to FAPARalone). A consequence of this large re-30

duction in modelled photosynthesis per unit foliar area and
ecosystem level GPP was a strong decrease in the potential
transpiration rate (Epot; Eq. 6) through the effect of net pho-
tosynthesis on canopy conductance (Eq. 15). Together with
the increase of τw (Eq. 6) in the JOINT experiment, the de-35

cline in Epot had the same effect on the simulated phenology
as the smaller parameter changes in the FAPARalone exper-
iment. The lack of a FAPAR constraint in the CO2alone ex-
periment allowed the assimilation to overly reduce the foliar
area by increasing τw at the prior rate of photosynthesis and40

thus Epot to satisfy the constraint by the atmospheric CO2

observations. As a consequence, due to the water-cycle feed-
back, the modelled foliar area was clearly different between
the JOINT and CO2alone experiments.

4.4.2 Boreal zones45

The CO2alone and JOINT experiments showed similar
global statistics when compared with atmospheric CO2 ob-
servations (Table 5 and Fig. 4). Their global and hemispheric
net uptake was similar (Northern Hemisphere: 2.24/2.20
PgC yr−1; Southern Hemisphere: 0.98/0.98PgC yr−1), but50
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Figure 8. Parameter changes of tropical evergreen trees in multiples
of the prior uncertainty.

their underlying spatial patterns were different, in particu-
lar in the boreal zone (Fig. 7). The entire boreal zone took
up a large share of the global carbon sequestration in the
JOINT experiment (0.88 PgC yr−1), especially in conifer-
ous deciduous (CD) dominated regions of Eastern Siberia 55

(0.30 PgC yr−1). The CO2alone experiment showed a sim-
ilar net C uptake in the boreal region, but the uptake in the
CD dominated region was 0.16 PgC yr−1 stronger than in
the JOINT experiment. This difference was mainly driven
by larger foliar area and increased leaf-level productivity 60

(parameter fphoto) of the CD PFT in the CO2alone experi-
ment. In the same latitudinal band, coniferous evergreen trees
showed reduced foliar area in the CO2alone experiment com-
pared to the JOINT experiment, reducing the net uptake by
0.16 PgC yr−1, such that the differences in these regions 65

cancel each other. These spatial differences can nevertheless
be seen as minor differences in the ability of the posterior
JOINT and CO2alone experiment in capturing the amplitude
of the seasonal cycle at individual northern-most stations.

5 Discussion 70

5.1 Comparison of the simulated C cycle with
independent estimates

The application of the CCDAS led to significant changes of
the modelled carbon cycle in JSBACH. The average global
GPP of the JOINT experiment (111 PgC yr−1) was substan- 75

tially reduced from the prior run (152 PgC yr−1) and was
slightly lower than independent, data-driven estimates of 119
± 6 PgC yr−1 (Jung et al., 2011) and 123 ± 8 PgC yr−1

(Beer et al., 2010), as well as estimates of comparable land
surface models (ranging from 111 - 151 PgC yr−1; Piao et al. 80

2013). Partly driven by the reduction of GPP, the net pri-
mary production (NPP) was also significantly reduced (from
66 PgC yr−1 (prior) to 46 PgC yr−1 (JOINT). While this
is lower than the commonly accepted reference value of 60
PgC yr−1, it is still compatible with the range of available 85
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estimates for NPP of 44 - 66 PgC yr−1 (Cramer et al., 1999;
Saugier and Roy, 2001). The latitudinal distribution of GPP
in comparison to an empirical estimate based on satellite
data and field measurements (Jung et al., 2011) shows that
the reduction of GPP occurred across the globe, leading to5

a better agreement of GPP in the Northern extra-tropics be-
tween 30◦N and 60◦N, but a smaller simulated GPP in the
tropical rain forests (Fig. 6). The reduction of GPP in the
Northern extra-tropics is likely associated with the overesti-
mation of the seasonal cycle of atmospheric CO2 by the prior10

model, which was successfully reduced primarily by reduc-
ing Northern extra-tropical productivity, in particular in tem-
perate and boreal grasslands.

Despite the strong reduction in NPP, the posterior models
stored only little less C in vegetation (389 - 420 PgC) than15

the prior model (424 PgC). All of these estimates are lower
than the 556 PgC vegetation carbon based on updated Ol-
son’s major world ecosystem carbon stocks2, but comparable
to a more recent estimate of global vegetation carbon storage
of 442 ± 146 PgC (Carvalhais et al., 2014). The posterior20

amount of soil carbon from the assimilation runs using at-
mospheric CO2 as a constraint compare favourably (within
the uncertainty) to the estimates of 1343 PgC based on the
Harmonized World Soil Database (HWSD)3. This estimate is
more appropriate for the presented comparison than the more25

recent and higher estimate of soil carbon by Carvalhais et al.
(2014) of 1836 - 3257 PgC (95% confidence interval), as the
latter includes estimates of permafrost carbon, which is not
modelled with the current version of the MPI-CCDAS.

The above changes in the carbon cycle led to significant30

differences in the simulated annual net land carbon fluxes
between the assimilation experiments. The assimilation ex-
periments using atmospheric CO2 as a constraint consider-
ably increased the net land carbon uptake from 1.0 PgC in
the prior run to 3.2 PgC during 2005-2009. This increase pri-35

marily occurred by reducing ecosystem respiration more than
reducing GPP. Our estimate of the net land carbon sink is
slightly larger than the residual land carbon sink estimate in-
ferred from atmospheric measurements and auxiliary fluxes
by Le Quéré et al. (2015), who derived 2.4 ± 0.8 PgC yr−1

40

for the period 2000 - 2009 (even though correcting for pre-
industrial carbon fluxes from land to the ocean via rivers
would lead to 2.85 PgC yr−1; see Le Quéré et al. 2015
and Jacobson et al. 2007). Apart from interannual variabil-
ity which may have contributed to the differences between45

the two studies, it is likely that our slightly larger estimate
arises from the comparatively small net ocean carbon flux
of 1.1 PgC yr−1 (Rödenbeck et al., 2013), which we pre-
scribed in our assimilation, compared to the estimate of 2.4

2http://cdiac.ornl.gov/epubs/ndp/ndp017/ndp017b.html
3http://webarchive.iiasa.ac.at/Research/LUC/External-World-

soil-database/HTML/

± 0.5 PgC yr−1 of Le Quéré et al. (2015)4 (which reduces 50

to 1.95 PgC yr−1 when correcting for the river input). Bear-
ing in mind that the atmospheric CO2 observations more di-
rectly constrain the net land carbon fluxes at seasonal and an-
nual scales than the gross fluxes or carbon pools, assuming
a larger ocean net carbon flux would have reduced the land 55

uptake to be more compatible with the estimate of Le Quéré
et al. (2015).

5.2 Comparison to previous studies

Our results are consistent with earlier studies using JSBACH
(Dalmonech and Zaehle, 2013) showing that JSBACH over- 60

estimates the seasonal cycle amplitude of atmospheric CO2.
The posterior estimates of this amplitude was considerably
reduced and hence improved in all three experiments (Fig. 5)
. This also holds for FAPARalone, for which the comparison
with CO2 is an independent evaluation. Note that the prior 65

we reported here already relies on a corrected maximum leaf
area index (Λmax) of coniferous evergreen trees (see Sect. 3).
For the run with the off-the-shelf configuration of JSBACH
(results not shown), the high latitude mean seasonal cycle
amplitude was clustered around 30 ppm which means an 70

overestimation of about 15 ppm. In the prior reported here,
this overestimation reduced to about 5 - 10 ppm and further
reduced in the FAPAR alone experiment (Fig. 5). Given this
information, boreal phenology considerably controls the sea-
sonal cycle of the high latitude atmospheric CO2-signal and 75

TIP-FAPAR can improve this aspect even though the CO2

trend is deteriorated (Fig. 4). Obviously, adding CO2 as a
constraint further improves the fit to the seasonal cycle am-
plitude.

This is also supported by Kaminski et al. (2012) who as- 80

similated CO2 and a different FAPAR product (Gobron et al.,
2007) jointly, using the BETHY-CCDAS. They found an im-
proved seasonal cycle amplitude of CO2 for their joint as-
similation with real data, which is in line with our findings.
Through factorial uncertainty propagation with their assim- 85

ilation scheme (Mission benefit analysis), Kaminski et al.
(2012) also found that the inclusion of FAPAR yields only
a moderate uncertainty reduction in the simulated carbon
fluxes and mainly reduces the water flux uncertainties. This
indicates that FAPAR only added little information to the 90

modelled carbon cycle in addition to atmospheric CO2. We
in contrast have shown a considerable impact of TIP-FAPAR
by altering the spatial net C flux patterns between the JOINT
and CO2alone experiments.

Our study also showed a considerable difference of GPP 95

estimates that are not likewise reflected in the net carbon
fluxes, as these are more directly constrained by CO2. Also
Koffi et al. (2012), using a variant of the BETHY-CCDAS
(Rayner et al., 2005; Scholze et al., 2007), found large dif-

4The estimates of Rödenbeck et al. (2013) and Le Quéré et al.
(2015) are not fully compatible because they differ in the accounting
of carbon fluxes from rivers to the ocean.
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ferences in their posterior GPP-estimates ranging from 109
- 164 PgC yr−1 when using different transport models, at-
mospheric station densities and prior uncertainties. As in
our study, their relatively large GPP-ranges are not reflected
in the net fluxes, as these are more directly constrained by5

the atmospheric CO2 network. A striking difference to the
results of Koffi et al. (2012) occurs in the tropics, where
they overestimate GPP compared to data-driven estimates,
whereas the MPI-CCDAS underestimates GPP. As will be
discussed later (Sect. 5.3.2), our underestimation of tropical10

GPP is likely a compensating effect arising from the respira-
tion part of the model that only can be modified globally. This
is not the case for the BETHY-CCDAS, which allows for a
spatially more explicit control on heterotrophic respiration.
It appears thus likely that a larger posterior GPP in the MPI-15

CCDAS could be expected with a system allowing for more
spatial freedom in the respiration part of the assimilation sys-
tem, for instance by making faut_leaf and fslow vary by plant
functional type. Regardless of this difference, our work fur-
ther supports earlier findings (Rayner et al., 2005; Scholze20

et al., 2007; Koffi et al., 2012) that despite some constraint
on Northern extra-tropical GPP, the global land GPP cannot
be well constrained with atmospheric CO2 alone. It appears
thus vital that additional information is provided, especially
in tropical regions, to further reduce uncertainty in the spatial25

distribution of the gross fluxes. This likely will propagate to
an improved estimate of the net CO2-fluxes as well.

Within the BETHY-CCDAS, Rayner et al. (2005) found a
very pronounced decrease of NPP from 68 PgC yr−1 in the
prior run to 40 PgC yr−1 in the posterior run. This decrease30

was driven by a decrease of their parameter fR,leaf (a value
also achieved by Scholze et al., 2007), which is functionally
comparable to the MPI-CCDAS parameter faut_leaf . Their
estimate is thus similar to our strong NPP-reduction (JOINT
NPP: 46 PgC yr−1). This apparent similarity towards rela-35

tively small numbers (compared to other estimates) should
not mislead to the conclusion that global NPP is well con-
strained from atmospheric CO2, because it ignores spatial
offsets between the estimates, and the fact that the MPI-
CCDAS and BETHY-CCDAS approaches to estimate NPP40

from GPP are fairly similar. Assimilation of CO2 into other,
simpler biosphere models achieved ranges for NPP from 36
to 53 PgC yr−1 given different model formulations (Kamin-
ski et al., 2002).

5.3 Critical appraisal of the current MPI-CCDAS45

With the set-up of the cost function and given the tangent-
linear version of the JSBACH model, the assimilation prob-
lem for the MPI-CCDAS is clearly defined and solutions of
the problem are by construction compatible with the model
dynamics. This is a considerable difference to alternative50

methods, but also means that in the posterior estimates, any
model structural deficits will be compensated for by unreal-
istic parameter values or can be detected in large model-data

residuals. This allows to detect model structural errors and/or
deficits in the set-up, which then can lead to a reformula- 55

tion of the forward model (see e.g.: Kaminski et al., 2003;
Rayner et al., 2005; Williams et al., 2009; Kaminski et al.,
2013). The MPI-CCDAS framework described here can be
steadily improved through regular improvements of the JS-
BACH model structure by including missing or correcting 60

false model parametrisations (e.g. Knauer et al., 2015). The
system is versatile enough to add more constraints from rel-
evant and complementary, multiple data sources (Luo et al.,
2012) to come up with more robust regional estimates than
the current atmospheric inversion allow. 65

5.3.1 Assimilation procedure

The results clearly show that two data-streams can be suc-
cessfully integrated with the MPI-CCDAS. The posterior
parameter values (Table 2) were different between the FA-
PARalone and JOINT as well as the CO2alone and JOINT 70

experiments, showing that the joint use of the two data
streams added information to the posterior result by prevent-
ing the degradation of the phenology simulation when try-
ing to fit the CO2 observations (Table 5 and 4). Hence, even
though the JSBACH phenology is only weakly influenced 75

by the carbon cycle and mainly controlled by other drives
(e.g.: soil moisture, temperature), there are strong interac-
tions among carbon and water cycle parameters and simu-
lated FAPAR, a finding supported by Forkel et al. (2014).
Thus the combination of different data streams in the JOINT 80

experiment helped estimating parameters of different pro-
cesses to remain within acceptable bounds. The capability
of assimilating multiple data streams simultaneously is a dis-
tinct advantage of the MPI-CCDAS over alternative strate-
gies that assimilate multiple data streams by following a se- 85

quential design of assimilating FAPAR prior to carbon cycle
information. Such an algorithm would break the model link-
age between phenological and photosynthesis parameters,
which would lead to situations where the observations will
not be equally well matched as in a joint assimilation. Since 90

our results have demonstrated that a joint assimilation is fea-
sible without impairing the fit to the individual data sources,
a joint assimilation approach appears therefore recommend-
able.

While the assimilation procedure achieved a strong reduc- 95

tion of the cost function and the norm of the gradient (see
Table 3), the norm of the gradient was closest to zero in the
case of the FAPAR constraint, but not for CO2, even though
the relative reduction in the CO2-cases was larger. Such a
non-zero gradient was also noted by Rayner et al. (2005) in 100

their CO2 assimilation with the BETHY-CCDAS. The fact
that the MPI-CCDAS successfully reduces the norm of the
gradient for FAPAR suggests that this is not a general failure
of the MPI-CCDAS, but specific to the particularities of the
CO2 set-up. It is presently unclear, what is causing the assim- 105

ilation to fail to reach the minimum of the cost function, and
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further tests with alternative station network settings, param-
eter priors or time-periods are needed to evaluate the cause.
We believe that our results can still be meaningfully inter-
preted and used to evaluate the general capacity of the MPI-
CCDAS as a comprehensive data assimilation tool.5

5.3.2 Parameter set-up

Another cautionary note about the posterior parameter val-
ues is warranted: Some of the parameters of the JOINT and
CO2alone experiment were altered strongly compared to the
assumed prior uncertainty. This is possible within the MPI-10

CCDAS, because the prior contribution to the cost-function
is weak due to the small number of parameters compared to
the number of observations. One example is the fslow param-
eter, which controls for the initial soil C pool size and thus the
disequilibrium between GPP and respiration (Table 2). An-15

other example is the photosynthesis parameter fphotos for the
tropical evergreen PFT in the JOINT experiment, which was
reduced by more then 2.5 times the prior uncertainty and to
roughly 75% of its prior value. As a consequence, the assim-
ilation procedure can result in parameter values with small20

prior probabilities. This either points toward too tight prior
uncertainties or to model structural problems. The current
MPI-CCDAS excludes the model spin-up from the assimila-
tion procedure which likely leads to such structural problems
as discussed in the following.25

The solution applied here for the spin-up was to allow the
MPI-CCDAS to manipulate the initial soil C pool by one
globally valid modifier. Our results demonstrate that using
this approach it is possible to reproduce very well the space-
time structure of the atmospheric CO2 budget at the time30

scale of several years (Fig. 4 and Table 5). However, this ap-
proach introduces an undesirable imprint of the spatial dis-
tribution of the prior productivity on the final model out-
come, which may cause imperfections in the ability of the
MPI-CCDAS to accurately capture the spatial distribution of35

the net land carbon uptake. Allowing for more spatially ex-
plicit modifiers for the initial carbon pools (as is done in the
BETHY-CCDAS) by e.g. linking the initial soil disequilib-
rium to a particular PFT, would be a first step forward.

The stiffness of the MPI-CCDAS respiration parametri-40

sation likely also caused the reduction of temperate GPP to
propagate into the tropical zone, leading to the strong change
of fphotos for the tropical evergreen PFT in the JOINT ex-
periment. Because the overall net CO2 flux is constrained
by the atmospheric observations, reduction in temperate GPP45

requires a corresponding adjustment of the ecosystem respi-
ration to balance the budget. While lowering GPP also re-
duces autotrophic respiration (Eq. 18), any further reduc-
tion in respiration in the temperate zone by adjusting au-
totrophic (faut_leaf ) or heterotrophic respiration parameters50

(Q10, fslow) would also affect tropical respiration, because
in the current version of the MPI-CCDAS these parameters
are assumed to be valid globally. To balance the budget, a re-

duction in tropical GPP might have been required. Because
of enough water availability in the tropics a phase-shift in the 55

dry-wet cycle in the Amazonian rain forest may play a minor
role in the down-regulation of GPP during the assimilation.
At least no phase mismatch in atmospheric CO2 is observed
at Mauna Loa (Fig. 4) that would suggest such a problem.

We also found that extreme parameter changes in vegeta- 60

tion production to better match the observational constraints
would impede finding an optimum solution with realistic pa-
rameter values. A first series of experiments with the stan-
dard maximum foliar area for the coniferous evergreen PFT
(not reported here) revealed a bias of 0.4 in FAPAR in the 65

boreal zone. While, in these experiments, the FAPARalone
assimilation successfully removed this bias, the lack of a re-
calculated initial carbon pool meant that the spatial patterns
of the initial carbon pools belonging to the high-biased FA-
PAR values caused compensating effects in the carbon fluxes 70

of other PFTs in the JOINT assimilation run. To avoid this
significant bias from affecting our results, the MPI-CCDAS
experiments reported here are therefore based on a reduced
prior estimate for the coniferous evergreen PFT to account
for the sparseness of boreal forests. Strictly speaking this is a 75

violation of the Bayesian theory and a double counting of the
information contained in the FAPAR observations. We nev-
ertheless think that this violation is appropriate, as it corrects
for a known model shortcoming and since we do not change
the prior uncertainties and do not evaluate the posterior prob- 80

abilities of the parameters.

5.4 Outlook

Beside the previously discussed limitation related to the spin-
up and the representation of initial carbon pools, we can sug-
gest also other analysis and system developments to further 85

improve the MPI-CCDAS.
The discrepancies between FAPARalone and JOINT in

the foliar area estimates for crop-dominated regions, even
though large in extent, originates from the exclusion of TIP-
FAPAR as constraint for these regions. This likewise affected 90

the extra-tropical deciduous PFT, that co-occurred domi-
nantly in the same pixels. Increasing the constraining power
of TIP-FAPAR by either adding more pixels as constraints
or by increasing the resolution to finer grids might further
improve the phenology. We also did not analyse the pheno- 95

logical model behaviour in full detail, because the focus of
this work lied on analysing the benefit of the joint assimila-
tion. More focusing on only the FAPAR assimilation also in
a spatially more explicit manner could further evaluate the
phenology scheme and improve the modelled foliar area. 100

We have demonstrated that the JSBACH model is capa-
ble of reproducing the seasonal cycle and 5 year trend of the
observed atmospheric CO2 (Fig.s 4 and 5 and Table 5). We
have applied a careful selection of stations to avoid the im-
pact of local sources on modelled atmospheric CO2 mole 105

fractions, which cannot be simulated with the current coarse
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resolution of the MPI-CCDAS. Nevertheless, the evaluation
with the cross-validation sites demonstrates a good skill of
the posterior model also for these sites, suggesting that the
observed CO2 dynamics at monthly to yearly time scales are
reasonably well captured. Our study supports earlier findings5

that despite some constraint on Northern extra-tropic produc-
tion, the constraint of observed atmospheric CO2 on global
production is small (Koffi et al., 2012). It further also sup-
ports the studies of Rayner et al. (1999), Kaminski et al.
(1999) and Peylin et al. (2013) that the observational net-10

work of atmospheric CO2 only constrains a limited spatial
resolution. But we also demonstrated the value of using a
CCDAS instead of a pure atmospheric inversion to estimate
land fluxes, because it can ingest other data streams, which
might further constrain the regional estimates. In this first15

version of the MPI-CCDAS we have assumed the net fluxes
other than those simulated with JSBACH (fossil fuel emis-
sions and ocean exchange), as well as the atmospheric drivers
to JSBACH to be perfectly known, and thus impute all the
model-data mismatch on shortcomings of the land-surface20

model. It would be desirable to also account for the uncer-
tainties in these components of the modelling system to more
robustly identify potential model shortcomings.

Our results show that applying FAPAR and atmospheric
CO2 as a constraint for the JSBACH model leads to an im-25

proved simulation of phenology and Northern extra-tropic
GPP. As a consequence of the assimilation procedure, the
model also captures the magnitude of the global and hemi-
spheric net biome exchange. This is a major step forward to
including better constrained terrestrial models for the esti-30

mation of the global carbon budget (Le Quéré et al., 2015).
However, we set-up the model such that it attributes the dif-
ference between prior and posterior sink (i.e. 2.2 PgCyr−1)
to the soil carbon storage. But it has been long known that
the terrestrial net carbon uptake, and thus the CO2 signal35

seen by the atmospheric observations, is strongly affected by
natural (such as fire) and anthropogenic disturbances (such
as land-use change; Houghton et al. 2012). These processes
contribute to the disequilibrium of vegetation and soil car-
bon pools with vegetation production, and thus affect the40

spatial pattern of terrestrial carbon release and uptake. With-
out consideration of these processes, one should be careful
in analysing the MPI-CCDAS projected carbon cycle trends
and attribution of drivers of the trends. The tangent-linear
version of the JSBACH model contained in the MPI-CCDAS45

already has the appropriate modules to simulate disturbance
by fire (Lasslop et al., 2014) and land-use (Reick et al., 2013).
A further development of the MPI-CCDAS could be to ac-
tivate these processes. In order to improve on the current
situation it might also be desirable to constrain the post-50

disturbance dynamics of the carbon pools or at least to anal-
yse how well these are constrained. This would also allow
to add more data streams to potentially disentangle the tight
parameter linkages in the model.

6 Conclusions 55

The assimilation of five years of remotely sensed FAPAR
and atmospheric CO2 observations with the MPI-CCDAS
was generally successful in that the fairly substantial model-
data mismatch of the prior model was largely reduced. The
assimilation procedure strongly reduced the too large prior- 60

estimate of GPP, and generally led to an improvement of
the simulated carbon cycle and its seasonality. The resul-
tant carbon cycle estimates compared favourably to inde-
pendent data-driven estimates, although tropical productiv-
ity was lower than these estimates. The posterior global net 65

land-atmosphere flux was well constrained and commensu-
rate with independent estimates of the global carbon budget.
Our analysis of the prognostic fluxes for a consecutive 2-year
period as well as at stations withheld from the assimilation
procedure demonstrates that our results are robust. 70

The factorial inclusion of FAPAR and atmospheric CO2

as a constraint clearly demonstrated that the two data streams
can be simultaneously integrated with the MPI-CCDAS. We
have shown the potential of multi-datastream assimilation
by adding TIP-FAPAR as a constraint and have shown how 75

this data streams helps constraining the foliar area without
degrading the ability of the model to capture seasonal and
yearly dynamics of the atmospheric CO2 mole fractions.
However, the multi-data assimilation also pointed to model
structural problems in the initialisation, which need to be ad- 80

dressed. Nevertheless, our study highlights the potential of
adding new data streams to constrain different processes in a
global ecosystem model.

This study thus provides an important step forward in the
development of global atmospheric inversion schemes, by 85

adding a process-based component to disentangle drivers of
the terrestrial carbon balance, and the opportunity to apply
multiple data streams to constrain them in the framework of
a land surface model belonging to a coupled carbon-cycle
climate model. On the one hand improving the assimilation 90

system and on the other hand adding more data streams can
ultimately lead to regionally constrained estimates of the ter-
restrial carbon balance for the assessment of current and fu-
ture trends.

Code availability 95

The JSBACH model code is available upon request to S. Za-
ehle (soenke.zaehle@bgc-jena.mpg.de)

The TM3 model code is available upon request to to C.
Rödenbeck (christian.roedenbeck@bgc-jena.mpg.de)

The TAF generated derivative code is subject to license 100

restrictions and not available.
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Appendix A: CO2 station list

The stations of atmospheric CO2-observations used for as-
similation and evaluation are given in Table A1 resp. Table
A2.

Table A1. CO2 stations used in the assimilation together with their
median uncertainty.

ID Longitude Latitude Median Uncertainty

MNM 153.97 24.30 1.4
SBL -60.02 43.93 5.9
ALT -62.52 82.45 1.8
ASC -14.42 -7.92 1.1
AZR -27.19 38.76 1.9
BHD 174.90 -41.40 1.0
CHR -157.17 1.70 1.0
CRZ 51.85 -46.45 1.0
EIC -109.45 -27.15 1.1
ESP -126.83 49.56 2.9
GMI 144.78 13.43 1.2
HBA -26.65 -75.58 1.0
ICE -20.21 63.30 1.9
KER -177.15 -29.03 1.0
KUM -154.82 19.52 1.6
MHD -9.90 53.33 2.4
MID -177.37 28.22 1.7
MQA 158.97 -54.48 1.0
RPB -59.43 13.17 1.1
SEY 55.17 -4.67 1.0
SHM 174.10 52.72 2.1
SIS -1.23 60.23 3.1

STM 2.00 66.00 3.2
TDF -68.48 -54.87 1.0
ZEP 11.88 78.90 2.3
MLO -155.58 19.53 1.1
SMO -170.57 -14.25 1.0
SPO -24.80 -89.98 1.0

Appendix B: Mapping variants5

For performance reasons, the assimilation is not performed
in the physical parameter space but parameters p are trans-
formed to x expressed in multiples of the prior uncertainty,
the intrinsic units of the problem (Kaminski et al., 1999). The
most basic mapping is:10

x=
p− p0

σprior
⇔ p= p0 +σprior ∗x (B1)

An extension of this is to apply lower bounds in the mapping
back to physical space with

Table A2. CO2 stations used for evaluation that have not been used
as constraints for the assimilation.

ID Longitude Latitude

PAL 24.12 67.97
PRS 7.70 45.93
RYO 141.83 39.03
YON 123.02 24.47
CBA -162.72 55.20
CFA 147.06 -19.28
CGO 144.70 -40.68
COI 145.50 43.15
CYA 110.52 -66.28
HAT 123.80 24.05
IZO -16.48 28.30
KEY -80.20 25.67
LEF -90.27 45.93
LJO -117.25 32.87
LMP 12.61 35.51
MAA 62.87 -67.62
NWR -105.60 40.05
PSA -64.00 -64.92
SUM -38.47 72.57
TAP 126.13 36.73
UTA -113.72 39.90
UUM 111.10 44.45
WIS 34.88 31.13
WLG 100.91 36.28
BRW -156.60 71.32
SYO 39.58 -69.00
CMN 10.70 44.18
SCH 7.92 47.92

p= pmin +xlow/x ∗σprior
only if

x < xlow =
pmin +σprior − p0

σprior

(B2)

with pmin the minimum allowed parameter value. 15

Appendix C: Parameter values

Some parameters were modified with a factor within the
MPI-CCDAS, because model structure did not allow to di-
rectly change these values and thus such an approach was
required. The parameter values are listed in Table C1. 20

Appendix D: PFT-distribution

The vegetation distribution of the PFT’s as prescribed in the
MPI-CCDAS is given in Fig. D1.
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Table C1. Values of those parameters that have been changed with a multiplicative factor during the assimilation.

PFT TrBE TrBD ETD CE CD RS TeH TeCr TrH TrCr

Prior Λmax [m2/m2] 7.0 7.0 5.0 1.7 5.0 2.0 3.0 4.0 3.0 4.0
Joint Λmax [m2/m2] 6.9 4.1 4.9 1.7 3.2 2.7 1.9 2.5 1.6 2.1

Prior V cmax [µmol/m2s] 39.0 31.0 66.0 62.5 39.1 61.7 78.2 100.7 8.0 39.0
Joint V cmax [µmol/m2s] 29.2 33.3 65.1 59.2 40.6 62.1 75.4 67.9 8.3 34.1

Prior Jmax [µmol/m2s] 74.1 58.9 125.4 118.8 74.3 117.2 148.6 191.3 140.0 700.0
Joint Jmax [µmol/m2s] 55.5 63.3 123.7 112.5 77.2 117.9 143.2 129.0 145.0 611.2

TrBE TrBD

ETD CE

CD RS

TeH TeCr

TrH TrCr

0.0 0.2 0.4 0.6 0.8 1.0

Figure D1. Fractional vegetation coverage of the PFT’s as prescribed in the MPI-CCDAS. See Table 1 for abbreviations.
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